DPP - 6 (Basic Maths)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/36
https://youtu.be/fHeqMPCzWMI
https://physicsaholics.com/note/notesDetalis/70

Q 1. x varies with time as: $x=\left(3 t^{2}-2\right)$, then minimum value of x is:
(a) 2
(b) -2
(c) zero
(d) $-\infty$

Q 2. Maximum value of $y=3 \sin x+4 \cos x$ is:
(a) 5
(b) $\frac{5}{\sqrt{2}}$
(c) 1
(d) ∞

Q 3. Function $y=x^{3}-2 x+1$ will have its maxima at ' x ' equal to:
(a) $\frac{2}{3}$
(b) $\sqrt{\frac{2}{3}}$
(c) $-\sqrt{\frac{2}{3}}$
(d) $\sqrt{\frac{3}{2}}$

Q 4. Function $y=F(x)$ has its maxima value at $\mathrm{x}=x_{1}$, then:
(a) $F^{\prime}\left(x_{1}\right)>0$
(b) $F^{\prime}\left(x_{1}\right)<0$
(c) $F^{\prime \prime}\left(x_{1}\right)>0$
(d) $F^{\prime \prime}\left(x_{1}\right)<0$

Q 5. Number of minima for $y=\frac{x^{3}}{3}-4 x+1$ are:
(a) 1
(b) 2
(c) 3
(d) zero

Q 6. Let $f(x)=x^{3}-12 x+7$. Which of the following statement is correct?
(a) The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has minimum, at $\mathrm{x}=-2$
(b) The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has maximum, at $\mathrm{x}=0$
(c) The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has minimum, at $\mathrm{x}=2$
(d) None of these

Q 7. Let $f(x)=\sin x+\sqrt{3} \cos x$. Which of the following statement is correct?
(a) The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has minimum value $y=-1$
(b) The graph of $\mathrm{y}=\mathrm{f}(\mathrm{x})$ has maximum value $y=1$
(c) The graph of $y=f(x)$ has minimum value $y=-2$
(d) None of these

Q 8. What will be the maximum value of $y=3 \sin x$ for interval $x \in[0,2 \pi]$?
(a) 3
(b) 1
(c) -3
(d) -1

Q 9. What is true about the derivative of a function at a maximum or minimum point of the function?
(a) The derivative is equal to zero.
(b) The derivative is always positive.
(c) The derivative is always negative.
(d) None of these are correct.

Q 10. Suppose we found the point $(3,19)$ to be a minimum point of the function f. What must be true about the second derivative of f evaluated at $\mathrm{x}=3$?
(a) It must be less than zero
(b) It must be greater than zero
(c) It must be equal to zero
(d) None of these are correct

Q11. $\mathrm{y}=2 x^{3}-15 x^{2}+36 x+10$ maxima of y is at
(a) $\mathrm{x}=3$
(b) $\mathrm{x}=2$
(c) $X=1$
(d) $x=4$

Q12. A string of length 40 m is used to make a rectangle. Find maximum possible area of rectangle?
(a) $100 \mathrm{~m}^{2}$
(b) $200 \mathrm{~m}^{2}$
(c) $400 \mathrm{~m}^{2}$
(d) $900 \mathrm{~m}^{2}$

Q13. A function has maximatat $\mathrm{x}=\mathrm{a}$, then slope at $\mathrm{x}=\mathrm{a}$ is
(a) increasing
(b) decreasing
(c) zero
(d) May increase, may decrease

Q14. If $\frac{d^{2} y}{d x^{2}}=+$ ve at point A ingraph then A
(a) Must be maxima
(b) Must be minima
(c) May be minima
(d) None of these

Q15. We have $128 \pi \mathrm{~m}^{3}$ clay to make a solid cylinder. Radius of cylinder for minimum surface area is
(a) 6 m
(b) 8 m
(c) 4 m
(d) 12 m

Answer Key

Q. 1	b	Q. 2	a	Q. 3	c	Q. 4	d	Q. 5	a
Q. 6	c	Q. 7	c	Q. 8	a	Q.9	a	Q. 10	b
Q.11	b	Q.12	a	Q.13	c	Q. 14	d	Q.15	a

