

		DPP – 6 (Basic Maths)	
Video Solution on Website:-		https://physicsaholics.com/home/courseDetails/36	
Video Solution on YouTube:-		https://youtu.be/fHeqMPCzWMI	
Written Solution on Website:-		https://physicsaholics.com/note/notesDetalis/70	
Q 1. x	x varies with time as: $x =$ (a) 2 (b)	= $(3t^2 - 2)$, then minimum value of x is: a) -2 (c) zero (d) $-\infty$	
Q 2. M	Maximum value of $y = 3$ (a) 5 (b)	$3 \sin x + 4 \cos x$ is: $0) \frac{5}{\sqrt{2}}$ (c) 1 (d) ∞	
Q 3. I	Function $y = x^3 - 2x + (a) \frac{2}{3}$ (b)	- 1 will have its maxima at 'x' equal to: a) $\sqrt{\frac{2}{3}}$ (c) $-\sqrt{\frac{2}{3}}$ (d) $\sqrt{\frac{3}{2}}$	
Q 4. H (Function $y = F(x)$ has if (a) $F'(x_1) > 0$ (c) $F''(x_1) > 0$	ts maxima value at $x = x_1$, then: (b) $F'(x_1) < 0$ (d) $F''(x_1) < 0$	
Q 5. 1	Number of minima for y (a) 1 (c) 3	$y = \frac{x^3}{3} - 4x + 1$ are: (b) 2 (d) zero	
Q 6. I ((((Let $f(x) = x^3 - 12x +$ (a) The graph of $y = f(x)$ (b) The graph of $y = f(x)$ (c) The graph of $y = f(x)$ (d) None of these	7. Which of the following statement is correct? has minimum, at $x = -2$ has maximum, at $x = 0$ has minimum, at $x = 2$	
Q 7. I (((((Let $f(x) = \sin x + \sqrt{3}$ (a) The graph of $y = f(x)$ (b) The graph of $y = f(x)$ (c) The graph of $y = f(x)$ (d) None of these	cos x. Which of the following statement is correct? has minimum value $y = -1$ has maximum value $y = 1$ has minimum value $y = -2$	
Q 8. (What will be the maximu (a) 3 (c) -3	um value of $y = 3 \sin x$ for interval $x \in [0, 2\pi]$? (b) 1 (d) -1	

- Q 9. What is true about the derivative of a function at a maximum or minimum point of the function?
 - (a) The derivative is equal to zero.
 - (b) The derivative is always positive.
 - (c) The derivative is always negative.
 - (d) None of these are correct.
- Q 10. Suppose we found the point (3,19) to be a minimum point of the function f. What must be true about the second derivative of f evaluated at x = 3?
 - (a) It must be less than zero
 - (b) It must be greater than zero
 - (c) It must be equal to zero
 - (d) None of these are correct
- Q11. $y = 2x^3 15x^2 + 36x + 10$ maxima of y is at (a) x = 3(b) x = 2(c) x = 1
- A string of length 40 m is used to make a rectangle. Find maximum possible area of Q12. rectangle ? (b) 200 m
 - (a) $100 m^2$

(c) $400 m^2$

(d) 900 n

(d) x = 4

- A function has maxima at x = a, then slope at x = a is Q13. (a) increasing (b) decreasing (c) zero
 - (d) May increase, may decrease
- If $\frac{dx^2}{dx^2}$ = +ve at point A in graph then A Q14. (a) Must be maxima (b) Must be minima (c) May be minima (d) None of these
- Q15. We have $128\pi m^3$ clay to make a solid cylinder. Radius of cylinder for minimum surface area is (a) 6m (b) 8m (c) 4m (d) 12m

Answer Key

Q.1 b	Q.2 a	Q.3 c	Q.4 d	Q.5 a
Q.6 c	Q.7 c	Q.8 a	Q.9 a	Q.10 b
Q.11 b	Q.12 a	Q.13 c	Q.14 d	Q.15 a